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1. Introduction

In Mechanics of Continua, Eringen1 presents a large deformation theory for electromagnetics
coupled with continuum mechanics. While similar approaches have been taken by other authors
in the literature, there is no consensus on how to treat electromagnetic fields in solids subjected to
finite deformations. The discrepancies among these approaches almost always include
transformation rules for polarization, though there are also inconsistencies for the transformation
rules of the other fields as well.2–5

Eringen presents an application of his theory in the case of a simple shear deformation. The
boundary value problem (BVP) solved corresponds to an infinitely large parallel plate capacitor
with an isotropic dielectric where one plate is sheared relative to the other as shown in the Figure.
Inertial and velocity effects are neglected. This BVP is a simple, easily solved problem that can
be used to assess different hyperelastic theories, including Eringen’s, since in a hyperelastic
theory, the field quantities, e.g., polarization, electric field, and stress, can be determined in the
material (Lagrangian) frame, and the spatial (Eulerian) frame as a function of deformation once a
form of the free energy function has been assumed.

In this report, we detail the solution of the simple shear example problem using the hyperelastic
theories of Eringen1 and Clayton.3 Both theories predict a polarization response that is not
collinear with the electric field in the spatial frame. Furthermore, this effect is first order in the
deformation and does not reduce to accepted small deformation theory where there is no
distinction between the spatial and material frames.

y, Y

x, X

++++++++++++++++++++++++++

--------------------------

a

Figure. Schematic of the dielectric slab
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2. Nonlinear Theory and Material Frame Representation

In general, the deformation at a material point (see, for example, Malvern6) is defined by a
transformation from the material coordinates, XI , to the spatial coordinates, xi, through the
mapping

xi = xi(XI) . (1)

Throughout this report, lowercase subscripts refer to the spatial system while uppercase
subscripts refer to the material system. The mapping xi(XI) is assumed to be bijective so that the
inverse relationship XI = XI(xi) exists. The mapping is also assumed to be smooth and
differentiable. The deformation gradient tensor, xi,I = ∂xi

∂XI , is defined through

dxi = xi,IdX
I , (2)

with the inverse deformation gradient tensor given by XI
,i. The Green’s strain tensor is defined in

terms of the deformation gradient tensor by

CIJ = xi,Igijx
j
,J , (3)

where gij is the metric tensor of the spatial frame.

2.1 Electrostatics and Boundary Conditions

For this example, electrostatics is assumed, and all the governing equations are presented with
respect to the spatial reference frame. The pertinent Maxwell’s equations are in either vector or
indicial notation where superscripts and subscripts refer to contravariant and covariant
components, respectively, given by

∇ ·D = 0,
1√
|g|

∂

∂xi
(
√
|g|Di) = 0 , (4)

∇× E = 0,
1√
|g|
εijkEj,i = 0 , (5)

where the standard rule of summation over repeated indices applies. The relationship between the
electric displacement, Di, electric field, Ei, and polarization, Pi, is

Di = ε0Ei + Pi , (6)
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where ε0 is the permittivity of free space. In the Heaviside-Lorentz units used by Eringen, ε0 is
unity.

The boundary conditions are determined from the jump conditions on the material interfaces

n · [D] = wf , (7)

n× [E] = 0 , (8)

where wf is the surface charge and n is the normal to the surface. Following Eringen, a constant
uniform electric field is applied, which satisfies Eq. 5. This reduces Eq. 4 to

∇ ·P = 0 . (9)

Consequently, the polarization is spatially constant as well. If the applied electric field, in the
spatial frame as the material is deforming, only has an X2 component, the components of the
electric field in the spatial frame are

Ex = 0, Ey = Eo
y , Ez = 0 , (10)

where x ≡ x1, y ≡ x2, and z ≡ x3 have been used for notational convenience.

2.2 Mechanical Deformation and Boundary Conditions

As mentioned, the region of interest is defined to be an infinite isotropic homogeneous dielectric
slab subjected to a simple shear deformation defined by

x1 = X1 + kX2 ,

x2 = X2 ,

x3 = X3 ,

(11)

where k is the amount of shearing. The associated deformation gradient tensor, xi,A, and Jacobian,
J , are

[xi,I ] =

1 k 0

0 1 0

0 0 1

 , (12)

J = det(xi,I) = 1 . (13)
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3. Eringen’s Hyperelastic Theory

Eringen1 presents a general nonlinear theory for isotropic, elastic dielectrics, including both
material and geometric nonlinearities.7 In this section, this hyperelastic theory is presented and
applied to the scenario of simple shear of a dielectric material, which was described in the
previous section. A form of the free energy is assumed such that the material is linear and
isotropic in the material frame. This assumed form, coupled with simple shear deformation, is
then used to determine the finite deformation electric field in the spatial frame. Eringen’s theory
was developed assuming both the spatial and material frames are Cartesian. Therefore, all the
superscripted indices in the preceding sections can be lowered to subscripts. Also, in Cartesian
frames, the metric tensors are the identity tensor, e.g., gij = δij .

The deformation gradient tensor is used by Eringen1 to transform the mechanical and
electromagnetic fields between the spatial and material reference frames. For electrostatics,
Eringen defines the material to spatial frame transformations as

Ek = EKXK,k ,

Pk =
1

J
ΠKxk,K ,

(14)

where EK and PK are the electric field and polarization represented in the material frame. J is the
determinant of the deformation gradient tensor.

3.1 Thermodynamics

According to general thermodynamic theory, the material properties, stress state, and polarization
can be determined from the deformation and the free energy, Ψ, which is the energy available in
the system for mechanical work. For electrostatics, the free energy is assumed to only be a
function of the Green’s strain, CIJ , and the material electric field, EI .

ρ0Ψ = Σ(CIJ , EI) . (15)

For an isotropic material, Σ must be objective to rotations and therefore can be written in terms of
the principal traces. (For a more in-depth treatment of objectivity requirements for isotropic
functions, see Itskov.8)

4



The polarization can be obtained in terms of the free energy by

ΠI = −2
∂Σ

∂I4
EI − 2

∂Σ

∂I6
CIJEJ − 2

∂Σ

∂I8
CIJCJKEK , (16)

where
I4 = E · E, I6 = E ·C · E, I8 = E ·C2 · E . (17)

Since it is not the focus of the current work, we simply mention that the stress can also be
determined in general form as a function of the energy if needed.1

3.2 Isotropic Linear Dielectric Material

Assuming the material is an isotropic, linear elastic, homogeneous dielectric, the form of Σ,
simplified from Eringen,1 is

Σ =
1

2
α1I

2
1 +

1

2
α6I2 +

1

2
α8I4 , (18)

where the αi are material properties, and I1, I2, and I4 are the principal traces

I1 = tr(C), I2 = tr(C2), I4 = E · E . (19)

Substituting Eq. 18 into Eq. 16 gives

ΠI = −α8EI . (20)

The material parameter −α8 is related to the dielectric constant. The parameters α1 and α6 can be
shown to be Lamé’s constants. With the form of the energy given by Eq. 18, the polarization does
not depend on the strain, and the stress does not depend on the electric field. Therefore, the
mechanical and the electrostatic responses are uncoupled. The polarization is also collinear with
the electric field in the material frame.

Based on the transformations in Eq. 14 and the boundary conditions, the electric field in the
material frame is

EX = 0, EY = Eo
y , EZ = 0 . (21)

Since the electric field is known from Eq. 21, the polarization in the material frame is

ΠX = 0, ΠY = −α8EY = −α8Ey, ΠZ = 0 . (22)

From Eq. 14, the polarization components expressed with respect to the spatial frame can be
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determined from

[P]i =

1 k 0

0 1 0

0 0 1




0

ΠY

0

 . (23)

The spatial components of the polarization are thus
Px

Py

Pz

 =


kΠY

ΠY

0

 =


−α8kE

o
y

−α8E
o
y

0

 . (24)

It is seen that the final form for the polarization in the spatial frame is not collinear with the
electric field due to the Px component depending on the magnitude of the shear deformation
through k.

3.3 Discussion of Eringen’s Theory

The finite deformation electrostatic theory presented by Eringen leads to anisotropy of the
dielectric material even when an isotropic, linear, homogeneous material is assumed. This
anisotropy is why the polarization and electric field are not collinear. Rewriting Eq. 24 so that the
effective material properties appear as a matrix,

Px

Py

Pz

 =

−α8(1 + k2) −α8k 0

−α8k −α8 0

0 0 −α8




0

Eo
y

0

 , (25)

and defining

[α]ij =

−α8(1 + k2) −α8k 0

−α8k −α8 0

0 0 −α8

 , (26)

it can be seen that the [α]11 term has a nonlinear dependence on the deformation that has no effect
when the electric field is 1-dimensional in the x2 direction.

Also, note that while the magnitude of the polarization in the x1 direction increases with the
deformation, the energy associated with the electric field is constant. This is because the energy
associated with the polarization and the electric field is E ·P, and since there is no Ex component
of the electric field, the Px component of the polarization does not contribute to the total energy.
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4. Clayton’s Hyperelastic Theory

A hyperelastic approach is also presented for electroactive materials by Clayton.3,9 Again,
electrostatics is assumed as in Section 2.1, and the applied deformation as defined in Section 2.2,
respectively. Clayton developed the theory using general curvilinear coordinates, so this section
uses raised indices for contravariant terms and lowered indices for the covariant terms.

The mappings between the spatial and material fields defined by Clayton are

ÊA = xa,AÊa ,

P̂A = xa,AP̂a ,
(27)

where hats are used for consistency with Clayton. The first of Eq. 27 is consistent with the
transformation Eringen used for the electric field, while the polarization transform is different.
Also, the transformation for the electric field is consistent with the electrostatic version of
Faraday’s law (Eq. 5) being form invariant between the spatial and material frames. These
transformations are for the covariant components of the fields, noted by the position of the indices.

4.1 Thermodynamics

The constitutive assumptions are

ψ = ψ(EAB, P̂A, θ, θ,A, X,GA) ,

ÊA = ÊA(EAB, P̂A, θ, θ,A, X,GA) ,

TAB = TAB(EAB, P̂A, θ, θ,A, X,GA) ,

(28)

where ψ is the free energy, ÊA is the electric field, and TAB is the second Piola-Kirchhoff stress
tensor (not symmetric). EAB is the Lagrangian strain defined as

EAB =
1

2
(CAB − δAB) . (29)

These assumptions differ from those of Eringen, Eq. 15, in that polarization is taken as an
independent variable, and the electric field is a dependent variable, while Eringen assumed the

7



opposite. The relationships between the free energy and the other dependent variables are

ÊA = CABρ
∂ψ

∂P̂B
,

TAB = ρ0
∂ψ

∂EAB
+ JC−1ACP̂CC

−1BDÊD .

(30)

As mentioned earlier, we only indicate that the stress, TAB, can be determined from the free
energy, but we do not consider this further. To make the notation similar to Eringen, let

ρ0ψ = Σ . (31)

Now assume that
Σ =

1

2
α1I

2
1 +

1

2
α6I2 +

1

2
α̃8Ĩ4 , (32)

where
I1 = tr(E), I2 = tr(E2), Ĩ4 = P̂ · P̂ . (33)

This is equivalent to the form of the free energy for the linear isotropic material used by Eringen,
Eq. 18, except the terms containing the electric field are switched to polarization, which are
denoted by the use of a tilde over the variable name. Note that α̃8 is related to the dielectric
properties but is not equal to α8.

Using Eq. 32, the electric field is

ÊA = FaAÊ
a = FaAF

a
B

ρ

ρ0

∂Σ

∂P̂B
, (34)

where
F a
B = xa,B, FaA = F b

Agba . (35)

The FaA term appears in Eq. 34 because of the need to lower the contravariant Eb and to perform
the pull-back to the material frame. Using the assumed form of the free energy, Eq. 32, the
electric field, Eq. 34, becomes

ÊA =
1

J
CAB(2P̂B ∂Σ

∂Ĩ4
) , (36)

with the right Cauchy-Green strain defined in curvilinear coordinates as

CAB = xa,Agabx
b
,B . (37)
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From Eq. 32,
∂Σ

∂Ĩ4
=

1

2
α̃8 , (38)

so the electric field can finally be determined by substituting Eq. 38 into Eq. 36,

ÊA =
1

J
α̃8CABP̂

B . (39)

This is the constitutive relation between ÊA and P̂B in the material frame. First, the position of
the indices on the fields should be noted since the covariant and contravariant nature of the fields
is important with regards to which bases the fields are referred. The implications for this become
apparent when mappings between the frames are considered in the next section. Second, Eq. 39
indicates that the deformation is explicitly included in the constitutive relationship between the
electric field and polarization in the material frame.

4.2 Simple Shear Example

As before, a simple shear deformation under a constant, uniform electric field is examined to see
how the theory is applied. The deformation is as defined in Section 2.2. Additional assumptions
include that both the spatial and material frames are Cartesian, as was also the case with Eringen’s
theory, and consequently the metrics are

gab = δab, gab = δab, GAB = δAB, GAB = δAB . (40)

This has the effect of making the right Cauchy-Green strain, CAB, the same as Eringen’s. Even
though Cartesian systems are assumed, curvilinear notation will still be employed since it is
essential in the discussion of the relationships between the fields.

We again assume that the spatial electric field is in the x2-direction, so

Êa =


0

Eo
y

0

 . (41)

Using the transformation for the electric field, Eq. 27, the material field is

[ÊA] =

1 0 0

k 1 0

0 0 1




0

Êy

0

 =


0

Êy

0

 . (42)
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From Eq. 39,

P̂A = J
1

α̃8

C−1ABÊB , (43)

where C−1AB is the inverse of CAB, which for simple shear is

[C−1AB] =

1 + k2 −k 0

−k 1 0

0 0 1

 . (44)

This gives a polarization in the material frame of

[P̂A] =
1

α̃8


−kÊy
Êy

0

 . (45)

The transformations between the frames given by Eq. 27 are covariant in nature,6 requiring the
polarization to be shifted from contravariant components to covariant components using

P̂A = GABP̂
B = δABP̂

B , (46)

so that the covariant components are equal to the contravariant ones,

[P̂A] =
1

α̃8


−kÊy
Êy

0

 . (47)

Using Eq. 27, the spatial polarization field is then given by

[P̂a] =
1

α̃8


−kEo

y

(1 + k2)Eo
y

0

 . (48)

4.3 Discussion of Clayton’s Theory

Similarly to Eringen’s theory, the polarization is not collinear with the applied electric field in
either the material or spatial frames. In contrast with Eringen’s theory, the x2-component of the
polarization has a second-order term associated with the deformation, Py = α̃8(1 + k2)Ey.

10



Rewriting Eq. 48 similarly to Eq. 26 so that the dielectric material properties appear as a matrix,
Px

Py

Pz

 =


1
α̃8

− 1
α̃8
k 0

− 1
α̃8
k 1

α̃8
(1 + k2) 0

0 0 1
α̃8




0

Eo
y

0

 , (49)

and defining

[α̃]ij =


1
α̃8

− 1
α̃8
k 0

− 1
α̃8
k 1

α̃8
(1 + k2) 0

0 0 − 1
α̃8

 , (50)

the full dependency of the polarization on the deformation can be seen.

5. Conclusions

The problem solved is analogous to an infinite dielectric slab polarized by a surface charge (or
applied electric field). The boundary conditions for the electrostatics are, consequently,
independent of the deformation. The distribution of surface charges relative to one another is not
affected by the shear deformation. In other words, a positive charge on the upper surface of the
slab has no preference for interacting with a specific negative charge on the bottom surface of the
plate. There are 3 issues that will be discussed in relation to the solution to the problem: the
anisotropy, the lack of consistency between the two theories, and the lack of consistency with
small deformation theory.

It is known that for the elastic tangent stiffness, under isotropic, hyperelastic assumptions, a
material can exhibit deformation-induced anisotropy.10,11 There are thermodynamic constraints on
the free energy that determine when the stiffness tensor retains isotropy under deformation. These
constraints limit how the free energy can depend on the deformation. Similar thermodynamic
constraints are unknown for the dielectric material properties, but the linear assumptions made in
Eqs. 18 and 32 are consistent with the constraints for isotropy of the stiffness tensor. Further study
must be done to determine if the dielectric properties should remain isotropic under deformation.

Second, the 2 hyperelastic theories for electroactive materials give different answers for the same
simple shear problem. While both theories predict the development of deformation-induced
anisotropy (the [α̃]12 and [α̃]21 terms in Eqs. 26 and 50), nonlinear effects appear in different
places. For Eringen’s theory, the α11 term has the nonlinear dependence on deformation (1 + k2).
The same dependency appears in Clayton’s theory but in the α̃22 term.
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Finally, under the assumption of small deformations, the material and spatial frames are the same.
For simple shear, this condition applies when k � 1 in Eq. 11, so that k2 → 0. Both theories
converge to the same solution under this condition, with the nonlinear terms disappearing. The
deformation-induced anisotropy is retained, since it depends linearly on k. This is problematic,
though, since there is no difference between the material and spatial frame. Under small
deformations, an isotropic dielectric material should retain isotropy under deformation.

The concerns with the solutions discussed previously demonstrate that the theory for electroactive
materials coupled with solid mechanics is not settled. One source of the ambiguity is the
transformations used for mapping the electric field and polarization between frames. The
motivation for the transformation for the electric field is that Maxwell’s equations have the same
form in both the spatial and material reference frames. Other authors make similar assumptions.2–5

Since the polarization does not explicitly appear in Maxwell’s equations (appearing only through
its relationship to E and D), there is ambiguity in the literature over how the polarization maps
between the spatial and material frames. The problem is more fundamental than determining how
the polarization maps between frames, though. Maxwell’s equations are not form invariant under
the types of transformations defined between the spatial and material frames. This was shown by
Einstein12 in his theory of special relativity. To find a fully consistent set of electromagnetic field
transformations, special relativity must be invoked and then simplifying assumptions made for
low-velocity cases (e.g., see Wiele et al.13). More work must be done to develop a fully coupled
electromechanical theory that addresses the inconsistencies existing in the current literature.
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